' }a_vdSﬁcripl; f-jmyg. :1_ : 3.1 R

" As the turtle noves with rbe pen dowa, set the appmpnatc clcmcms of array Floor to- lemn chc

6 command (prinit) is given, display.an astetisk or some other character of your choosing wherever
there is 2 11n the ‘aitdy. Whrever there i§ 4 zero, display a blank. Write 2 script to implement. tht
nﬁdegmp}ncs capabilities discussed here, Write. several turtic-gmphics pmgmms to dmv interest-
mg shapm Aéd odaer éotimands t6 increase thc power of y your rele-g

My object all sublime
I shelf aclicve &5 time.
N, 8. Gilhert

I it o world to bide virenes
e

w—-—\‘(‘"illﬁzlrn Shakespeare

Good as it is to infherit o
libvary, it is better to collect
ane.

-~ Augustine Birrel

A phitosopher of inposing
stature doesit think in a
veciin. Foen bis most
abstract ideas are, to sone
extent. conditioned by whar

s 01 is not bugien i the tine

when e Lives.
——Allred North Whitchead

o _l--GBJECT_I.VE'S |

I thiis chapte"_ you w!ll learn:
= Ob;ect based programmmg termmoiogy anid concepts.

n The concepts of enaapsuiatxon and data hldmg
o= Thevaiue af object onentatmn -
e To use the }mScnpwbjéctSMath Strmg Bate, i

Baelean mdxumer._ e

- -Z'TQ use the bro%‘ rs doéhment ami mndow;obgects.
":1'2'-: Touse cookxes T o .
a To repfeseﬂt objeets s;mply usmngON

JavaScript: Objects "383

11.1 Introduction

Most of the JavaScript programs we’ve demonstrated illustrate basic programming con-
cepts. These programs provide you with the foundation you need to bujld powerful and
complex scripts as part of your web pages. As you proceed beyond this chapter, you will
use JavaScript to manipulate every element of an XHTML document from a script.

This chapter presents a more formal treatment of objects, We begin by giving a
brief introduction to the concepts behind object-orientation. The remainder of the
chapter overviews—and serves as a reference for—several of JavaScript’s built-in objects
and demonstrates many of their capabilities. We also provide a brief introduction to
JSON, a means for creating JavaScript objects. In the chaprers on the Document Object
Model and Events that follow this chapter, you will be introduced to many objects pro-
vided by the browser that enable scripts to interact with the elements of an XHTML
document.

11.2 Introduction to Object Technology

This section provides a general introduction to object orientation. The terminology and
technologies discussed here support various chapters that come later in the book. Here,
you’ll learn that objects are a natural way of thinking about the world and about scripts
that manipulate XHTML documents. In Chapters 6-10, we used built-in JavaScript
objects—Math and Array—and objects provided by the web browser—document and

384 Internet & World Wide Web How to Program

window——to perform tasks in our scripts. JavaScript uses objects to perform many tasks and
therefore is referred to as an object-based programming language. As we have scen,
JavaScript also uses constructs from the “conventional” structured programming method-
ology supported by many other programming languages. The first five JavaScript chaprers
concentrated on these conventional parts of JavaScript because they are important com-
ponents of all JavaScript programs. Our goal here is to help you develop an object-
oriented way of thinking. Many concepts in this book, including CSS, JavaScript, Ajax,
Ruby on Rails, ASP.NET, and JavaServer Faces are based on at least some of the concepts
introduced in this section.

Basic Object-Technology Concepts

We begin our introduction to object technology with some key terminology. Everywhere
you lock in the real world you sce objects—people, animals, plants, cars, planes, buildings,
computers, monitors and so on. Humans think in terms of objects. Telephones, houses,
uaffic lights, microwave ovens and water coolers are just a few more objects we see around
us every day.

We sometimes divide objects into two categories: animate and inanimate. Animate
objects are “alive” in some sense—they move around and do things. Inanimate objects do
not move on their own. Objects of both types, however, have some things in common.
They all have attributes (e.g., size, shape, color and weight), and they all exhibit behaviors
(e.g.» a ball rolls, bounces, inflates and deflates; a baby cries, sleeps, crawls, walks and
blinks; a car accelerates, brakes and turns; a towel absorbs water). We'll study the kinds of
artributes and behaviors that software objects have.

Humans learn abour existing objects by studying their attributes and observing their
behaviors. Different objects can have similar artributes and can exhibit similar behaviors.
Comparisons can be made, for example, between babies and adults, and between humans
and chimpanzees.

Object-oriented design (OOD) models software in terms similar to those that people
use to describe real-world objects. It takes advantage of class relationships, where objects
of a certain class, such as a class of vehicles, have the same characteristics—cars, trucks,
lirtle red wagons and roller skates have much in common. OOD takes advantage of inher-
itance relationships, where new classes of objects are derived by absorbing characteristics
of existing classes and adding unique characteristics of their own. An object of class “con-
vertible” certainly has the characreristics of the more general class “automobile,” but more
specifically, the roof goes up and down.

Object-oriented design provides a natural and intuitive way to view the software
design process—namely, modeling objects by their actributes, behaviors and interrelation-
ships just as we describe real-world objects. OOD also models communication berween
objects. Just as people send messages to one another (e.g., a sergeant commands a soldier
to stand at attention), objects also communicate via messages. A bank account object may
receive a message to decrease its balance by a certain amount because the customer has
withdrawn that amount of money.

OOD encapsulates (i.e., wraps) attributes and operations (behaviors) into objects—
an object’s attributes and operations are intimately tied together. Objects have the prop-
erty of infermation hiding. This means that objects may know how to communicate with
one another across well-defined interfaces, but normally they are not allowed to know how

JavaScript: Objects 385

other objects are implemented—implementation details are hidden within the objects
themselves. We can drive a car effectively, for instance, without knowing the details of how
engines, transmissions, brakes and exhaust systems work internally-—as long as we know
how to use the accelerator pedal, the brake pedal, the steering wheel and so on. Informa-
tion hiding, as we'll see, is crucial to good software engineering.

Like the designers of an automobile, the designers of web browsers have defined a set
of objects that encapsulate an XHTML document’s elements and expose to a JavaScript
programmer the attributes and behaviors that enable a JavaScript program to interact with
(or script) those elements (objects). You'll soon see that the browser’s document object
contains attributes and behaviors that provide access to every element of an XHTML doc-
ument. Similarly, JavaScript provides objects that encapsulate various capabilities in a
script. For example, the JavaScript Array object provides attributes and behaviors that
enable a script to manipulate a collection of data. The Array object’s Tength property
(ateribure) conrains the number of elements in the Array. The Array object’s sort method
{behavior) orders the elements of the Array.

Some programming languages—Ilike Java, Visual Basic, C# and C++—are object ori-
ented. Programming in such a language is called object-oriented programming (OOP),
and it allows computer programmers to implement object-oriented designs as working
software systems. Languages like C, on the other hand, are procedural, so programming
tends to be action oriented. In procedural languages, the unit of programming is the func-
tion. In object-oriented languages, the unit of programming is the class from which
objects are eventually instantiated (an OOP term for “created”). Classes contain functions
that implement operations and data that comprises attributes.

Procedural programmers concentrate on writing functions. Programmers group
actions that perform some common task into functions, and group functions to form pro-
grams. Data is certainly important in procedural languages, bur the view is thar dara exists
primarily in support of the actions that functions perform. The verbs in a system specifi-
cation help a procedural programmer determine the set of functions that work together to
implement the system.

Classes, Properties and Methods

Object-oriented programmers concentrate on creating their own user-defined types called
classes. Each class contains data as well as the set of functions that manipulate that data
and provide services to clients (i.e., other classes or functions thar use the class). The data
components of a class are called properties. For example, a bank account class might
include an account number and a balance. The function components of a class are called
methods. For example, a bank account class might include methods to make a deposit
(increasing the balance), make a withdrawal (decreasing the balance) and inquire what the
current balance is. You use built-in types (and other user-defined types) as the “building
blocks” for constructing new user-defined types (classes). The nouns in a system specifi-
cation help you determine the ser of classes from which objects are creared that work
together to implement the system.

Classes are to objects as blueprints are to houses—a class is a “plan” for building an
object of the class. Just as we can build many houses from one blueprint, we can instantiate
(create) many objects from one class. You cannot cook meals in the kitchen of a blueprint;
you can cook meals in the kitchen of a house. You cannot sleep in the bedroom of a blue-
print; you can sleep in the bedroom of a house.

386 Internet & World Wide Web How to Program

Classes can have relationships with other classes. For example, in an object-oriented
design of a bank, the “bank teller” class needs to relate to other classes, such as the “cus-
tomer” class, the “cash drawer” class, the “safe” class, and so on. These relationships are
called associations.

Packaging software as classes makes it possible for future software systems to reuse the
classes. Groups of related classes are often packaged as reusable components. Just as real-
tors often say that the three most important factors affecting the price of real estate are
“location, location and location,” some people in the software development community
say that the three most important factors affecting the future of software development are
“reuse, reuse and reuse.

Indeed, with object technology, you can build much of the new software you’ll need
by combining existing classes, just as automobile manufacturers combine interchangeable
parts. Each new class you create will have the potential to become a valuable software asset
that you and other programmers can reuse to speed and enhance the quality of future soft-
ware development efforts. Now that we've introduced the terminology associated with
object-orientation, you'll see it used in the upcoming discussions of some of JavaScript’s
objects.

[1.3 Math Object

The Math object’s methods allow you to perform many common mathematical calcula-
tions. As shown previously, an object’s methods are called by writing the name of the
object followed by a dot (.) and the name of the method. In parentheses following the
method name is the argument (or a comma-separated list of arguments) to the method.
For example, to calculate and display the square root of 900.0 you might write

document.writeln({ Math.sqrt({ 900.0));:

which calls method Math. sart to calculate the square root of the number contained in the
parentheses (900.0), then outputs the result. The number 900.0 is the argument of the
Math.sqrt method. The preceding statement would display 30.0. Some Math object
methods are summarized in Fig. 11.1.

Fig. 1.1 | Mmath object methods. (Part | of 2.)

JavaScript: Objects 387

A &

Fig. 11.1 | Math object methods. (Part 2 of 2.)

Common Programming Error i 1.1

Forgetting to invoke a Math method by preceding the method name with the object name Math
and a dot (.) is an error.

Software Engineering Observation 11.1

The primary difference besween invoking a standalone function and invoking a method of an
object is thas an object name and a dot are not required to call a standalone function.

The Math object defines several commonly used mathematical constants, summarized
in Fig, 11.2. [Note: By convention, the names of constants are written in all uppercase let-
ters so they stand out in a program.]

Fig. 11.2 | Properties of the Math object. (Part I of 2.)

388 Internet & World Wide Web How to Program

Math,LOGZE
Math. LOGIOE
Math. P

Math.SQRT1. 2
Math.SQRT2

Fig. 11.2 | Properties of the Math object. (Part 2 of 2.)

, Good Programming Practice 11. |

Use the mathematical constants of the Math object rather than explicitly typing the numeric value
of the constant.

11.4 String Object

In this section, we introduce JavaScript’s string- and character-processing capabilities. The
techniques discussed here are appropriare for processing names, addresses, telephone num-
bers, and similar items.

11.4.1 Fundamentals of Characters and Strings

Characters are the fundamental building blocks of JavaScript programs. Every program is
composed of a sequence of charactets grouped together meaningfully that is 1nterpreted by
the compurer as a series of instructions used to accomplish a task.

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters, such as +, -, *, /, and $. JavaScript supports the set
of characters called Unicode, which represents a large portion of the world’s languages. A
string is an object of type String. String literals or string constants (often called anony
mous String objects) are written as a sequence of characters in double quotation marks
or single quotation marks, as follows:

"John Q. Doe" {(a name)

'9999 Main Street' (a street address)
"Waltham, Massachusetts" {a city and stare)
'(201) 555-1212° (a telephone number)

A String may be assigned to a variable in a declaration. The declaration
var color = "blue";

initializes variable color with the String object containing the string "blue”. Strings can
be compared via the relational (<, <=, > and >=) and equality operators (== and !=). Strings
are compared using the Unicode values of the corresponding characters. For example, the
expression "hello" < "Hello" evaluates to false because lowercase letters have higher
Unicode values.

JavaScript: Objects a9

11.4.2 Methods of the String Object

The String object encapsulates the atrributes and behaviors of a string of characters. It
provides many methods (behaviors) thac accomplish useful tasks such as selecting charac-
ters from a string, combining strings (called concatenation), obtaining substrings of a
string, searching for substrings within a string, tokenizing strings {i.c., splitting strings into
individual words) and converting strings to all uppercase or lowercase letters. The String
object also provides several methods that generate XHTML tags. Figure 11.3 summarizes
many String methods. Figures 11.4-11.7 demonstrate some of these methods.

3% Internet & World Wide Web How to Program

Substr(

Fig. 11.3 | Some String object methods. {Part 2 of 2.)

I 1.4.3 Character-Processing Methods

The script in Fig. 11.4 demonstrates some of the String object’s character-processing
methods, including charat (returns the character at a specific position), charCodeAt (ret-
urns the Unicode value of the character at a specific position), fromCharCode (returns a
string created from a series of Unicode values), toLowerCase (returns the lowercase version
of a string) and toUpperCase (returns the uppercase version of a string).

Fig. 11.4 [String methods charAt, charCodeAt, fromCharCode, toLowercase and
toUpperCase. (Part | of 2.)

JavaScript: Objects 391

Character at index 0 in 'ZEBRA'is Z
Charscter code at index 0 in 'ZEBRA' 5 90

"WORLY containe character codes 87, 79, 81 and 68

'AbCAERG in lowercase is ‘abedefy’
‘AbCAEAG' in uppercase is ABCDEFG'

Fig. 11.4 | String methods charAt, charCodeAt, fromCharCode, toLowercase and
tolUpperCase. (Part 2 of 2.)

Lines 16-17 display the first character in String s ("ZEBRA™) using String method
charat. Method charAt recurns a string containing the character at the specified index (0
in this example). Indices for the characters in a string start ac O (the first character) and go
up to (but do not include) the string’s 1ength (i.e., if the string contains five characters,
the indices are 0 through 4). If the index is outside the bounds of the string, the method
returns an empty stting.

Lines 18—19 display the character code for the first character in String s ("ZEBRA")
by calling $tring method charCodeAt. Method charCodeAt returns the Unicode value of

i

392 Internet & World Wide Web How to Program

the character at the specified index (0 in this example). If the index is outside the bounds
of the string, the method returns NaN.

string method fromCharCode receives as its argument 2 comma-scparated list of
Unicode values and builds a string containing the character representation of those Uni-
code values. Lines 21-23 display the string "WORD", which consists of the character codes
87,79, 82 and 68. Note that the String object calls method fromCharCode, rather than a
specific String variable. Appendix D, ASCII Character Set, contains the character codes
for the ASCII character set.

The statements in lines 25-26 and 27-28 use String methods toLowerCase and
toUpperCase to display versions of String s2 ("AbCdEFC") in all lowercase letters and all
uppercase letters, respectively.

11.4.4 Searching Methods

Being able to search for a character or a sequence of characters in a string is often useful.
For example, if you are creating your own word processor, you may want to provide a cap-
ability for searching through the document. The script in Fig. 11.5 demonstrates the
String object methods index0f and 1astIndexOf that search for a specified substring in
a string. All the searches in this example are performed on the global string Tetters (ini-
tialized in line 14 with "abcdefghijkImnopgrstuvwxyzabcdefghijkm" in the script).

The user types a substring in the XHTML form searchForn’s inputval rext field and
presses the Search button ro search for the substring in Tqtters. Clicking the Search
button calls function buttonPressed (defined in lines 16-29) to respond to the onclick
event and perform the searches. The results of each search are displayed in the appropriare
text field of searchFarm,

Lines 21-22 use String method index0f to determine the location of the first occur-
rence in string Tetters of the string inputval.value (i.e., the string the user typed in the

Fig. 11.5 | String searching with index0f and lastIndexOf. (Part | of 3.)

JavaScript: Objects 393

The string to search is:
abedefghijkimnopqrstuvwxyzabedefghijklm

Enter substring to search for det . <h

First occumence located at index 3

Last ccemrence located st index 28
First occumvence fom index 12 located at index 29
Last occmrence from mdex 12 located at index 3

Fig. 11.5 | String searching with index0f and TastIndexOf. {Part 2 of 3.)

394 Internet & World Wide Web How to Program

Fiest occuerence located atindex {43 |
Last occamrence ocated atindex (23 |
First occurence from index 12 located at index [23
Last occrerence from index 12 located st index 1|

Fig. 11.5 | String searching with index0f and 1astIndexOf. (Part3 of 3.)

inputval text field). If the substring is found, the index at which the first occurrence of
the substring begins is returned; otherwise, -1 is returned.

Lines 23-24 use String method 1astIndexOf to determine the focation of the fast
occurrence in letters of the string in inputVal. If the substring is found, the index at
which the last occurrence of the substring begins is returned; otherwise, —1 is returned.

Lines 25-26 use String method index0f to determine the location of the first occur-
rence in string Tetters of the string in the inputVal text field, starting from index 12 in
letters. If the substring is found, the index at which the first occurrence of the substring
(starting from index 12) begins is returned; otherwise, -1 is returned.

Lines 27-28 use String method lastIndexOf to determine the location of the last
occurrence in Jetters of the string in the inputval text field, starting from index 12 in
letters and moving toward the beginning of the input. If the substring is found, the
index at which the first occurrence of the substring (if one appears before index 12) begins
is returned; otherwise, —1 is returned.

Software Engineering Observation 11.2

¥ String methods indexOf and lastIndexOf, with their optional second argument (the starting
W (ndex: from which to search), are particularly useful for continuing a search through a large
amount of rext.

11.4.5 Splitting Strings and Obtaining Substrings

When you read a sentence, your mind breaks it into individual words, or tokens, each of
which conveys meaning to you. The process of breaking a string into tokens is called tok-
enization. Interpreters also perform tokenization. They break up statements into such
individual pieces as keywords, identifiers, operators and other elements of a programming
language. Figure 11.6 demonstrates String method sp1it, which breaks a string into its
component tokens. Tokens are separated from one another by delimiters, typically

JavaScript: Objects 395

white-space characters such as blanks, tabs, newlines and carriage returns, Other characters
may also be used as delimiters to separate tokens. The XHTML document displays a form
containing a text field where the user types a sentence to tokenize. The results of the token-
ization process are displayed in an XHTML textarea GUI component. The scripr also
demonstrates String method substring, which returns a portion of a string,

The user types a sentence into the rext field with id inputval text field and presses
the Split button to tokenize the string. Function splitButtonPressed (lines 12-21) han-
dles the button’s onclick event.

Fig. 11.6 | String object methods sp1it and substring. (Part | of 2.)

396 Internet & World Wide Web How to Program

it

(BB @ e B

iThia isa senmr‘lﬁée_-\.\;t‘&'nwsevg_v} ?"05.251') i

The sentence splitinto wordsis
This

The fies 10 characters of the input swing are This s |

3

Fig. 11.6 | string object methods split and substring. (Part 2 of 2)

Line 14 gets the value of the input field and stores it in variable inputstri ng. Line 15
calls String method split to tokenize inputStri ng. The argument to method split is
the delimiter string—the string that determines the end of each token in the original
string. In this example, the space character delimits the tokens. The delimiter string can
contain multiple characters that should be used as delimirers. Method split returns an
array of strings containing the tokens. Line 17 uses Array method join to combine the
tokens in array tokens and separare each token with a newline character (\n). The
resulting string is assigned to the value property of the XHTML form’s output GUT com-
ponent {an XHTML textarea),

Lines 19-20 use String method substring to obtain a string containing the first 10
characters of the string the user entered (still stored in inputString). The method returns
the substring from the starting index (0 in this example) up to but not including the
ending index (10 in this example). If the ending index is greater than the length of the
string, the substring retutned includes the characters from the starting index to the end of
the original string. ’

[1.4.6 XHTML Markup Methods

The script in Fig. 11.7 demonstrates the String object’s methods that generate XHTML
markup tags. When a String object invokes a markup method, the method wraps the
String’s contents in the appropriate XHTML. tag, These methods are particularly useful
for generating XHTML dynamically during script processing.

Lines 12-17 define the strings that call cach of the XHTML markup methods of
the String object. Line 19 uses Stri ng method anchor to formar the string in variable
anchorText ("This s an anchor"} as

This is an anchor

JavaScript: Objects 397

This i3 moncspeced text
This inotri

This is text with a subscript
‘This is text with a ¥PersCUpt -
Click here to go to anchorText

XU ML Markup Kelhads of the Stimg Object Wind slernet bxpigier
e -~y {; :
e

1

W6+ [Cloxamplesich 1\ Mirpblethads bl @f{}{g

& subseript
This is text with a SUPErcnpt

Click hete to go to mcho:'l'@_x

s

Fig. 11.7 | String object XHTML markup methods. (Part { of 2.)

398 Internet & World Wide Web How to Program

XHEME Markup $ethiode ot the Siran Ubgec . Wisdows [neernuet Faplr

This is an anchor

This is monospaced text

Fig. 11.7 | String object XHTML markup methods. {Part 2 of 2.}

The name of the anchor is the argument to the method. This anchor will be used later in
the example as the targer of a hyperlink.

Line 20 uses String method fixed to display text in a fixed-width font by formatting
the string in variable fixedText ("This is monospaced text") as

<tt>This is monospaced text</tt>

Line 21 uses String method strike to display text with a line through it by formar-
ting the string in variable strikeText ("This is strike out text") as

<strike>This is strike out text</strikes>

Lines 22-23 use String method sub to display subscript text by formacting the string
in variable subText ("subscript") as

<sub»subscript</sub>

Note that the resulting line in the XHTML document displays the word subscript sma,ll-
er than the rest of the line and slightly below the line,

Lines 24-25 call String method sup to display superscript text by formarting the
string in variable supText ("superscript”) as

^{superscript}

Note that the resulting line in the XHTML document displays the word superscript
smaller than the rest of the line and slightly above the line.

Line 26 uses String method Vink to create a hyperlink by formarting the string in
variable 1inkText ("Click here to go to anchorText") as

Click here to go to anchorText

The target of the hyperlink (#top in this example) is the argument to the method and can
be any URL. In this example, the hyperlink target is the anchor created in line 19. If you
make your browser window short and scroll to the bottom of the web page, then click this
link, the browser will reposition to the top of the web page.

11.5 Date Object

JavaScript’s Date object provides methods for date and time manipulations. Date and time
processing can be performed based on the computer’s local time zone or based on World

Time Standard’s Coordinated Universal Time (abbreviated UTC)—formerly called

JavaScript: Objects 399

Greenwich Mean Time (GMT). Most methods of the Date object have a local time zone
and a UTC version. The methods of the Date object are summarized in Fig. 11.8.

i e ey ',%:%* L '
Fig. 11.8 | Date object methods. (Part | of 2.)

400 Internet & World Wide Web How to Program

‘sgtmfn'uiés(m, s, ms)

. EDT 2007 it the United Stas
- The time in nutaber of milliseconds sinee midnig
1970, (Sartic a5 gatT

Fig. 11.8 | Date object methods. (Part 2 of 2.)

The script of Fig. 11.9 demonstrates many of the local time zone methods in
Fig. 11.8. Line 12 creates a new Date object. The new operator allocates the memory for
the Date object. The empry parentheses indicate 2 call to the Date object’s constructor
with no arguments. A constructor is an initializer method for an object. Constructors are
called automatically when an object is allocated with new. The Date constructor with no
arguments initializes the Date object with the local computer’s current date and time,

Software Engineering Observation 11.3

When an object is allocated with new, the object’s constructar is called automatically to initialize
the object before it is used in the pragram.

Lines 16-19 demonstrate the methods toStri ng, tobocaleString, toUTCString and
valueOf. Note that method valueOf returns a large integer value representing the total

number of milliseconds between midnight, January 1, 1970, and the date and time stored
in Date object current,

JavaScript: Objects 401

Lines 23-32 demonstrate the Date object’s ger methods for the local time zone. Note
that method getFullYear returns the year as a four-digit number. Note as well that
method getTimeZoneOffset returns the difference in minutes berween the local time zone

and UTC time (i.., a difference of four hours in our time zone when this example was
executed).

F current = new Date();

Wrnztesetmnutes(59)
etSeconds(59)

Fig. 11.9 | Date and time methods of the Date object. {Part | of 2.}

402 Internet & World Wide Web How to Program

String representations and valueOf

toString: Moo Jvf 16 15:45:41 EDT 2007
toLocaleString: Monday, July 16, 2007 34541 PM
tolTCString Mon. 16 Jui 2007 19:45:41 UTC
valeOf 1184615141312

Get methods for local time zone

Specifying arguments for a new Date

B Date: Sun Mar 18 01:05:00 EDT 2007

Set methods for local time zone

Modiied date: Mg Dec 31 23:59:49 EST 2007

Fig. 11.9 | Date and time methods of the Date object. {Part 2 of 2.}

Line 36 demonstrates creating a new Date object and supplying arguments to the Date
constructor for year, month, date, hours, minutes, seconds and milliseconds. Note that the
hours, minutes, seconds and milliseconds arguments are all optional. If any one of these argu-
ments is not specified, a zero is supplied in its place. For the hours, minutes and seconds
arguments, if the argument to the right of any of these arguments is specified, it too must
be specified (e.g., if the minutes argument is specified, the hours argument must be speci-
fied; if the milliseconds argument is specified, all the arguments must be specified).

JavaScript: Objects 403

Lines 40—45 demonstrate the Date object set methods for the local time zone. Date
objects represent the month internally as an integer from 0 to 11. These values are off by
one from what you might expect (ie., 1 for January, 2 for February, ..., and 12 for
December). When creating a Date object, you must specify 0 to indicate January, 1 to
indicate February, ..., and 11 to indicate December.

Common Programming Error 11.2
ﬁx‘lﬂuming that months are represented as numbers from 1 to 12 leads to off-by-one errors when

you are processing Dates.

The Date object provides two other methods that can be called without creating a new
Date object—Date.parse and Date . UTC, Method Date.parse receives as its argument a
string representing a date and time, and returns the number of milliseconds becween mid-
night, January 1, 1970, and the specified date and time. This value can be converted to a
Date object with the starement

var theDate = new Date(numberOfMilliseconds);

o

which passes to the Date constructor the number of milliseconds since midnight, January
1, 1970, for the Date object.
Method parse converts the string using the following rules:

» Short dates can be specified in the form MM-DD-YY, MM-DD-YYYY, MM/DD/YY or MM/
DD/YYYY, The month and day are not required to be two digits.

* Longdates that specify the complete month name (e.g., “January”), date and year
can specify the month, date and year in any order.

o Text in parentheses within the string is treated as a comment and ignored. Com-
mas and white-space characters are treated as delimirers.

s All month and day names must have at least two characters. The names are not
required to be unique. If the names are identical, the name is resolved as the last
match (e.g., “Ju” represents “July” rather than “June”).

s If the name of the day of the week is supplied, it is ignored.

» All srandard time zones (e.g., EST for Eastern Standard Time), Coordinated
Universal Time (UTC) and Greenwich Mean Time (GMT) are recognized.

» When specifying hours, minures and seconds, separate each by colons.

s When using a 24-hour-clock formar, “PM” should not be used for times after 12
noon.

pate method UTC returns the number of milliseconds between midnight, January 1,
1970, and the date and time specified as its arguments. The arguments to the UTC method
include the required year, month and date, and the optional hours, minutes, seconds and mil-
liseconds. If any of the hours, minutes, seconds ot milliseconds arguments is not specified, a
zero is supplied in its place. For the hours, minutes and seconds arguments, if the argument
to the right of any of these arguments in the argument list is specified, that argument must
also be specified (e.g., if the minutes argument is specified, the hours argument must be
specified; if the milliseconds argument is specified, all the arguments must be specified). As

404 Internet & World Wide Web How to Program

with the result of Date . parse, the result of Date, UTC can be converted to a Date object by
creating a new Date object with the result of Date. UTC as its argument.

11.6 Boolean and Number Objects

JavaScript provides the Boolean and Number objects as object wrappets for boolean true/
false values and numbers, respectively. These wrappers define methods and properties
useful in manipulating boolean values and numbers, Wrappers provide added functional-
ity for working with simple data types.

When a JavaScript program requires a boolean value, JavaScript automatically creates
a Boolean object to store the value. JavaScript programmers can create Boolean objects
explicitly with the statement

var b = new Boolean(booleanValue) ;

The constructor argument baolean Value specifies whether the value of the Boolean object
should be true or false. If booleanValue is false, 0, nuil, Number .NaN or an empty string
("), or if np argument is supplied, the new Boolean object contains false. Otherwise,
the new BoG1ean object contains true. Figure 11.10 summarizes the methods of the Boo1 -
ean object,

JavaScript automatically creates Number objects to store numeric values in a Java-
Script program. JavaScript programmers can create a Number object with the statement

var n = new Number(mumericValue)

The constructor argument numericValue is the number to store in the object. Although
you can explicitly create Number objects, normally the JavaScript interpreter creates them
as needed. Figure 11.11 summarizes the methods and properties of the Number object.

) “R;cmms the steing "true” if the value BftﬁéBmﬂéean ohbije
L rerurns th;.sg:ing“'fﬂ se", | R

. Rerurns the value true if the Boolean object

Fig. 11.10 | Boolean object methods.

Returns the string representation of the number. The optional .
radix argament {a number from 2 @ 36) specifies the number’s
base. For example, radix 2 results in the binary représentation of
the number, 8 results in the oieral represéntation, 10 results in'the

‘decimal representation and 16-resuirs in the hexadecimal represen- -

tation.

" toStringC radix)

Fig. E1.11 | Number object methods and properties. (Part | of 2.)

JavaScript: Objects 405

al_'x_thmme: exprcasmn Ihat does not result in-a number: ﬁc;g *
mon Mrsaintc "hello") cannot convert. ﬂwmmg

Fig. 1£.11 | Number object methods and properties. (Part 2 of 2.)

11.7 document Object

The document object is used to manipulate the document that is currently visible in the
browser window. The document object has many properties and methods, such as methods
document.write and document.writeln, which have both been used in prior JavaScript
examples. Figure 11.12 shows the methods and properties of the document objects that are
used in this chapter. You can learn more about the properties and methods of the docu-
ment object in our JavaScript Resource Center (www.deitel.com/javascript).

..e st;-mg to the XHTML documcnt s }CHTMI. code and
:a.dds a newline character at the end.

SR A string containing the values of all the cookies storéd

© 5 - ayter’s computet for the current docummt. Sec Secuo
e "'7""":'vmngceﬂkles. ‘ '
| JastModified T o .The date and time that this document was last mod!ﬁed

Fig. 11.12 | Important document object methods and properties.

406 Internet & World Wide Web How to Program

11.8 window Object

The window object provides methods for manipulating browser windows. The following
script shows many of the commonly used properties and methods of the window object and
uses them to create a website that spans multiple browser windows. Figure 11.13 allows
the user to create a new, fully customized browser window by completing an XHTML
form and clicking the Submit button. The script also allows the user to add text to the new
window and navigate the window to a different URL.

The script starts in line 10. Line 12 declares a variable to refer to the new window. We
refer to the new window as the child window because it is created and controlled by the
main, or parent, window in this script. Lines 1450 define the createChildwindow func-
tion, which determines the fearures that have been selected by the user and creates a chiid
-window with those features (but does not add any content to the window). Lines 18-20
declare several variables to store the status of the checkboxes on the page. Lines 23-38 sct
each variable to "yes" or "no" based on whether the corresponding checkbox is checked
or unchecked.

Fig. 11.13 | Using the window object to create and modify child windows. (Part | of 4.)

JavaScript: Objects 407

Fig. 11.13 | Using the window object to create and modify child windows. (Part 2 of 4.)

408 Intemet & World Wide Web How to Program

Hello, this is the main window

Please check the features fo enshie for the <hid window
) Toot Bar] Menu: Bar [7] Scroll Bars

Please enber the text that you would ke to display in the chid window
[<he>itako, 1am a chig v [Cﬂ*ww’mn J - Wod® Chtd Winaow) Cisse Shld Windaw]

The other window's URL s
i I SerChadURL

S Waakc g Windews lteonet bl

Fig. [1.13 | Using the window object to create and modify child windows. (Part 3 of 4.)

JavaScript: Objects 409

Hello, this is the main window

Hl Please chock the feanwes to exable for the chikd window
Tool Bar [l Memn Bwr [F Seroll Bars

EIAl Piease enter the teat that you wosid i 10 display i the clidd window

<htofiomo, i am a chidd (L G Chid Window] {__ wodly GliiWndaw] Clows Crks Wikw |

Hello. I am a child window.

Fig. 11.13 | Using the window object to create and modify child windows. (Part 4 of 4.)

‘The statement in lines 41—44 uses the window object’s open method 1o create
the requested child window. Method open has three parameters. The first parameter is the
URL of the page to open in the new window, and the second parameter is the name of the
window. If you specify the target attribute of an a (anchor) element to correspond to
the name of a window, the href of the link will be opened in the window. In our example,
we pass window.open empty strings as the first two parameter values because we want the
new window to open a blank page, and we use a different method to manipulate the child
window’s URL.

The third parameter of the open method is a string of comma-separated, all-lowercase
feature names, each followed by an = sign and either "yes" or "no" to determine whether
that feature should be displayed in the new window. If these parameters are omitted, the
browser defaults to a new window containing an empty page, no title and all features vis-
ible. [Note: If your menu bar is normally hidden in IE7, it will not appear in the child
window. Press the Alt key to display it.] Lines 47—49 enable the buttons for manipulating
the child window—these are initially disabled when the page loads.

Lines 53-60 define the function modi fyChi1dwindow, which adds a line of text to the
content of the child window. In line 55, the script determines whether the child window
is closed. Function modi fyChildwindow uses property childWindow.closed to obtain a
boolean value that is true if childwindow is closed and false if the window is still open. If
the window is closed, an alert box is displayed notifying the user that the window is cur-
rently closed and cannot be modified. If the child window is open, lines 58-59 obtain text
from the textForChi1d input (lines 103-104) in the XHTML form in the parent window
and uses the child’s document .write method to write this text to the child window.

Function closeChi 1dwindow (lines 63—73) also determines whether the child window
is closed before proceeding. If the child window is closed, the script displays an alert box
telling the user that the window is already closed. If the child window is open, line 68

410 Internet & World Wide Web How to Program

closes it using the childwindow.close method. Lines 7072 disable the buttons that
interact with the child window.

Look-and-Feel Observation 11.1

Popup windows should be wsed sparingly. Many users dislike websites that open additional win-
dows, or that resize or reposition the browser. Some some users have popup blockers that will pre-
vent new windows from opening,

Software Engineering Observation | 1.4

window. Tocation is a property that always contains a string representation of the URL displayed
in the current window. Typically, web browsers will allow a script wo rerieve the
window. Jocation praperty of another window only if the script belongs to the same website as
the page in the other window.

Function setChildwindowURL (lines 77-84) copies the contents of the myChi1duRL
text field to the Tocation property of the child window. If the child window is open, lines
81-82 set property Tocation of the child window to the string in the myChi 1dURL textbox.
This action changes the URL of the child window and is equivalent to typing a new URL
into the window’s address bar and clicking Go (or pressing Enter).

The script ends in line 86. Lines 88—116 contain the body of the XHTML document,
comprising a form that contains checkboxes, buttons, textboxes and form field labels. The
script uses the form elements defined in the body to obtain input from the user. Lines 106,
108, 110, and 115 specify the onc1ick attributes of XHTML buttons. Each burton is set
to call a corresponding JavaScript function when clicked.

Figure 11.14 contains a list of some commonly used methods and properties of the
window object.

Fig. 11.14 | Important window object methods and properties. (Part | of 2.)

JavaScript: Objects 411

Fig. 11.14 | Important window object methods and properties. (Past 2 of 2.)

11.9 Using Cookies

Cookies provide web developers with a tool for personalizing web pages. A cookie is a piece
of data that is stored on the user’s computer to maintain information about the client dur-
ing and berween browser sessions. A website may store a cookie on the client’s computer
to record user preferences or other information that the website can retrieve during the cli-
ent’s subsequent visits. For example, a website can retrieve the user’s name from a cookie
and use it to display a personalized greeting.

Microsoft Internet Explorer and Mozilla Firefox store cookies as small text files on the
dlient’s hard drive. When a user visits a website, the browser locates any cookies written by
scripts on that site and makes them available to any scripts located on the site. Note that
cookies may be accessed only by scripts belonging to the same website from which they
originated (i.e., a cookic set by a script on amazon. com can be read only by other scripts on
amazon.com).

Cookies are accessible in JavaScript through the document object’s cookie property.
JavaScripe treats a cookie as a string of text. Any standard string function or method can
manipulate a cookie. A cookie has the syntax “idenrifier=value,” where identifier is any
valid JavaScript variable identifier, and vafue is the value of the cookie variable. When mul-
tiple cookies exist for one website, identifier-value pairs are separated by semicolons in the
document . cookie string.

Cookies differ from ordinary strings in that each cookie has an expiration date, after
which the web browser deletes it. This date can be defined by setting the expires property
in the cookie string. If a cookie’s expiration date is not set, then the cookie expires by
default after the user closes the browser window. A cookie can be deleted immediately by
setting the expires property to a date and time in the past.

The assignment operator does not overwrite the entire list of cookies, but appends
a cookie to the end of it. Thus, if we set two cookies

document.cookie = "namel=valuel;";
document.cookie = "name2=value2;";

document. cookie will contain "namel=valuel; name2=value2".

Figure 11.15 uses a cookie to store the user's name and displays a personalized
greeting. This example improves upon the functionality in the dynamic welcome page
example of Fig. 6.17 by requiring the user to enter a name only during the first visit to the
web page. On each subsequent visit, the script can display the user name that is stored in
the cookie. '

Line 10 begins the script. Lines 12-13 declare the variables needed to obtain the time,
and line 14 declares the variable that stores the name of the user. Lines 1627 contain the
same if...e1se statement used in Fig. 6.17 to display a time-sensitive greeting.

4i2 internet & World Wide Web How to Program

Lines 30-66 contain the code used to manipulate the cookie. Line 30 determines
whether a cookie exists on the client computer. The expression document. cookie evalu-
ates to true if a cookie exists. If a cookie does not exist, then the script prompts the user
to enter a name (line 45). The script creates a cookie containing the string "name=", fol-
lowed by a copy of the user’s name produced by the built-in JavaScript function escape
(line 49). The function escape converts any non-alphanumeric characters, such as spaces

Fig. 11.15 | Using cookies to store user identification data. (Part | of 3.)

JavaScript: Objects 413

er Pros

Good Afternoon, Paul, welcome to
JavaScript programming!

Click bere if you are not Paul
Click Refresh (or Redoad) to ron the script again

4

Fig. 11.15 | Using cookies to store user identification data. (Part 2 of 3.)

414 Internet & World Wide Web How to Program

Good Afternoon, Paul, welcome to
JavaScript programming!

Click here & vou arc ot Pasd

Clik Refiesh (or Reoad) to rus the scipt again

Fig. 11.15 | Using cookies to store user identification data. (Part 3 of 3.)

and semicolons, in a string to their equivalent hexadecimal escape sequences of the form
“®XX.” where XX is the two-digit hexadecimal ASCII value of a special character. For
example, if name contains the value "David Green", the statement escape(name) evalu-
ates to "David¥20Green”, because the hexadecimal ASCII value of a blank space is 20. It
is a good idea to always escape cookie values before writing them to the client. This con-
version prevents any special characters in the cookie from being misinterpreted as having
a special meaning in the code, rather than being a character in a cookie value. For instance,
a semicolon in a cookie value could be misinterpreted as a semicolon separating two adja-
cent identifier-value pairs. Applying the function unescape to cookies when they are read
out of the document.cookie string converts the hexadecimal escape sequences back to
English characters for display in a web page.

E Good Programming Practice 11.2

Always store values in cookies with self-documenting identifiers. Do not forget to include the
identifier followed by an = sign before the value being stored.

If a cookie exists (i.c., the user has been to the page before), then the script parses the
user name out of the cookie string and stores it in a local variable. Parsing generally refers
to the act of splitting a string into smaller, more useful components. Line 34 uses the Java-
Script function unescape to replace all the escape sequences in the cookie with their equiv-
alent English-language characters. The script stores the unescaped cookie value in the
variable myCockie (line 34) and uses the JavaScript function sp1it (line 37), introduced
in Section 11.4.5, to break the cookie into identifier and value tokens. Ar this point in the
script, myCookie contains a string of the form “name=vafue". We call sp1it on myCookie
with = as the delimiter to obtain the cookieTokens array, with the first element equal to
the name of the identifier and the second element equal to the value of the identifier. Line
40 assigns the value of the second element in the cookieTokens array (i.e., the actual value
stored in the cookie) to the variable name. Lines 5253 add the personalized greeting to
the web page, using the user’s name stored in the cookie.

JavaScript: Objects 415

The script allows the user to reset the cookie, which is useful in case someone new is
using the computer. Lines 54-55 create a hyperlink that, when clicked, calls the JavaScript
function wrongPerson (lines 58—66). Lines 61-62 set the cookie name to nu1l and the
expires property to January 1, 1995 (though any date in the past will suffice). Internet
Explorer detects that the expires property is set to a date in the past and deletes the cookie
from the user’s computer. The nexc time this page loads, no cookie will be found. The
reload method of the Tocation object forces the page to refresh (line 65), and, unable to
find an existing cookie, the script prompts the user to enter a new name.

11.10 Final JavaScript Example

The past few chapters have explored many JavaScript concepts and how they can be app-
lied on the web. The next JavaScript example combines many of these concepts into a
single web page. Figure 11.16 uses functions, cookies, arrays, loops, the Date object, the
window object and the document object to create a sample welcome screen containing 2
personalized greeting, a short quiz, 2 random image and a random quotation. We have
seen all of these concepts before, bur this example illustrates how they work together on
one web page.

Fig. 11.16 | Rich welcome page using several JavaScript concepts. (Part | of 5.)

416 Internet & World Wide Web How to Program

Fig. 11.16 | Rich welcome page using several JavaScript concepts. (Part 2 of 5.)

JavaScript: Objects 417

,// 1oop through “all gquotes and write them in the new wmd
for { var ¥ = 0; 1 < guotes. 'Iength i+) -
quoteWindow.document.write((i+ 1) + ".) " 4+
quotes[1] + "

"),

p id = qu1ZSpot >
P1ease take our qui

ri t type o "text/javascmpt
S/ -variablé that gers the last modification date ‘and t:
var-madaate = niew Datel document.lastModified -); -

/- write the Jast modified date and tme to the pag.e
dccument writé { "This page was last modified "
-modDate. tolocaleString() J;

Fig. 11.16 | Rich welcome page using several JavaScript cancepts. (Part 3 of 5.)

o

418 Internet & World Wide Web How to Program

Tuesday, fuly 17, 2007 12:2%:14 PM
Good Afternoon, Paul, welcome to JavaScript programming!

Sl W

1) Fonn ever follows function.
Louis Henri Sullivan

2.) E pharibrit uaun. {One composed of many.)
Vigd

3 ks it & world wo bidle virtaes in?
‘Wilinm Shskespeare

Fig. 11.16 | Rich welcome page using several JavaScript concepts. (Part 4 of 5.)

JavaScript: Objects 419

Tuesday, Joly 17, 2007 12:29:14 PM

Good Afternioon, Paul, welcome to JavaScript programming!

This page wis jast modiled Tuesday, July 17, 2007 110500 AM

Fig. 11.16 | Rich welcome page using several JavaScript concepts. {Part5 of 3.)

The script that builds most of this page starts in line 10, Lines 12-13 declare variables
needed for determining the time of day. Lines 16-23 create two arrays from which content
is randomly selected. This web page contains both an image (whose filename is randomly
selected from the pictures array) and a quate (whose text is randomly selected from the
quotes array). Line 26 writes the user’s local date and time to the web page using the Date
object’s toLocaleString method. Lines 29-40 display a time-sensitive greeting using the
same code as Fig. 6.17. The script either uses an existing cookie to obtain the user’s name
(lines 43—54) or prompts the user for a name, which the script then stores in a new cookie

“(lines 55-63). Lines 66-67 write the greeting to the web page, and lines 7071 produce
the link for resetting the cookie. This is the same code used in Fig. 11.15 to manipulate
cookies. Lines 74—79 write the random image and random quote to the web page. The
script chooses each by randomly selecting an index into each array. This code is similar to
the code used in Fig. 10.7 to display a random image using an array.

Function al1Quotes (lines 82-98) uses the window object and a for loop to open a
new window containing al! the quotes in the quotes array. Lines 85-87 create a new
window called quotewindow. The script does not assign a URL, or a name to this window,
but it does specify the window features to display. Line 88 opens a new paragraph in
quoteWindow. A for toop (lines 91-93) traverses the quotes array and writes each quote to
quoteWindow. Lines 96-97 close the paragraph in quoteWindow, insert a new line and add
a link at the botrom of the page that allows the user to close the window. Note that all-
Quotes generates a web page and opens it in an entirely new window with JavaScript.

Function wrongPerson (lines 101-109) resets the cookie storing the user’s name. This
function is identical to function wrongPerson in Fig, 11.15.

Function openQuiz (lines 112116} opens a new window to display a sample quiz.
Using the window. open method, the script creates a new window conrtaining quiz2.html
(lines 114-115). We discuss quiz2.htm1 later in this section.

420 Internet & World Wide Web How to Program

The primary script ends in line 118, and the body of the XHTML document begins
in line 120, Line 121 creates the link that calls function al1Quotes when clicked. Lines
123-124 create a paragraph element containing the artribute 7d = "quizSpot®, This para-
graph contains a link that calls function openQuiz.

Lines 126-133 contain a second script. This script appears in the XHTML docu-
ment’s body because it adds a dynamic footer 1o the page, which must appear after the
static XHTML content contained in the first part of che body. This script creates another
instance of the Date object, but the date is set to the lase modified date and time of the
XHTML document, rather than the current date and time (line 128). The script obrains
the last modified date and time using property document. TastModified. Lines 131-132
add this information to the web page. Note that the last modified date and time appear at
the bottom of the page, after the rest of the body content. If this script were in the head
element, this information would be displayed before the entire body of the XHTML doc-
ument. Lines 133135 close the script, the body and the XHTML document.

The Quiz Page

The quiz used in this example is in a separate XHTML document named quiz2.html
(Fig. 11.17). This document is similar to quiz.html in Fig. 10.14. The quiz in this exam-
ple differs from the quiz in Fig. 10.14 in thar it shows the result in the main window in
the example, whereas the carlier quiz example alerts the result, After the Submit button in
the quiz window is clicked, the main window changes to reflect thar the quiz was taken,
and the quiz window closes.

her theanshie
EleméntByIdC. iny :
document, getElementById(" z5pot").

Fig. 11.17 | Online quiz in a child window. {Part | of 3.)

JavaScript: Objects 421

Tuesday, bty 17, 2007 1235038 PM
Good Afternoon, Paul, welcome to JavaScript programming!

Clirk here # vou are pot Panl

Es # B workd 10 hide virmes in?
Wikimm Shakespeare

View all quotes

Please take o g;si

This page was jast modified Tuesday, Jaly 7, 2007 11:05.00 AM

Fig. 11.17 | Oniine quiz in a child window. (Part 2 of 3.}

422 Internet & World Wide Web How to Program

Ot i ¥indaes interned 1 glnge:

Select the name of the tp that goes with the image shown:

Tp O Pakt Tie © Portabilty Tip

[y (Rasa

Toesday, Juiy 17, 2007 123503 PM
Good Afternoon, Pagl, welcome to JavaScript programming!

Click bere if you are oot Pant

Is & world to hide virtnes in?
$ Willam Shakespeare

View all guones
Congratulations, your answer is cofvect

This page was Jast modified Tuesday, July 17, 2607 110500 AM

Fig. 11.17 | Online quiz in a child window. (Part 3 of 3.)

Lines 15-22 of this script check the user’s answer and output the result to the main
window. Lines 16-17 use window.opener to write to the main window. The property
window.opener always contains a reference to the window that opened the current
window, if such a window exists, Lines 1617 write to property window. opener . docu-
ment.getElementById("quizSpot™).inmerHTML. Recall that quizSpot is the id of the

JavaScript: Objects 423

paragraph in the main window that contains the link to open the quiz. Property innerHTML
refers to the HTML code inside the quizSpot paragraph (i.e., the code between <p> and
</p>). Modifying the innerHTML property dynamically changes the XHTML code in the
paragraph. Thus, when lines 16-17 execute, the link in the main window disappears, and
the string "Congratulations, your answer is correct.” appears. Lines 19-22 modify
window.opener.document.getElementById("quizSpot™).innerHTML. Lines 19-22 use
the same technique to display "Your answer is incorrect. Please try again”, followed
by a link to try the quiz again.

After checking the quiz answer, the script gives focus to the main window (i.e., puts
the main window in the foreground, on top of any other open browser windows), using
the method focus of the main window’s window object. The property window. opener ref-
erences the main window, so window.opener.focus() (line 24) gives the main window
focus, allowing the user to see the changes made to the text of the main window’s quizSpot
paragraph. Finally, the script closes the quiz window, using method window.close (line
25).

Lines 28-29 close the script and head elements of the XHTML document. Line 30
opens the body of the XHTML document, The body contains the form, image, text labels
and radio buttons that comprise the quiz. Lines 52-54 close the form, the body and the
XHTML document.

I1.11 Using JSON to Represent Objects |

In 1999, JSON (JavaScript Object Notation)—a simple way to represent JavaScript
objects as strings—was introduced as an altetnative to XML as a data-exchange techinique.
JSON has gained acclaim due to its simple format, making objects easy to read, create and
parse. Each JSON object is represented as a list of property names and values contained in
curly braces, in the following format:

{ propertyNamel : valuel, propertyName2 : value? }
Arrays are represented in JSON with square brackets in the following format:
[valuel, value2, value3]

Each value can be a string, a number, a JSON object, true, false ot nu11. To appreciate
the simplicity of JSON data, examine this representation of an array of address-book
entries from Chapter 15:
[{ first: 'Cheryl', last: 'Black' },
{ first: 'James’, last: 'Blue’ 3,

{ first: "Mike', Tlast: 'Brown' },
{ first: 'Meg’, last: 'Gold' } 1

JSON provides a siraightforward way to manipulate objects in JavaScript, and many
other programming languages now support this format. In addition to simplifying object
creation, JSON allows programs to extract darta easily and to efficiently transmit data
across the Internet. JSON integrates especially well with Ajax applications, discussed in
Chapter 15. See Section 15.7 for a more detailed discussion of JSON, as well as an Ajax-
specific example. For more information on JSON, visit our JSON Resource Center at
www. deitel.com/json,

424 Internet & World Wide Web How to Program

11.12 Web Resources

www . deitel.com/javascript/

The Deitel JavaScript Resource Center conrains links to some of the best JavaScript resources on the
web. There you'll find categorized links to JavaSeripe tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skiil levels, from introductory to advanced.
Be sure to visit the related Resource Centers on XHTML (www.deitel. com/xhtm1/) and CS§ 2.1
(www.deitel.com/css21/).

e

one anut’her by dchmm, (yplmlfy wIn

cified, a zerg issupplied I s B

- place. For the hours, minnmandsmdsmgnmms, ift}m aagumgmmﬂw ightofanyofchese -
argumetits is specified, that argument miusc also-be specified (e85 (if the-minutes argument is

> specified; :hchamsargumemmmtbcspeaﬁ the. i e cified, all the
a:gummzsmus:bced)

't sez, f.hcn :he_caakie upmbydﬁ'aukaﬁm :
deléted im ""“ybysmmsrhemimj

j'avaScri;:)t:'f Objects B

H phmse mkemmﬂnepbrasz," 3 array;
B uxnsiate each English word into a: pvzgl.axin wmi, pkm
en& uthc word md add thc letters “ay. Thus word

bt

S
ek

G

Cher clvifedren say leari
ot bevoes af the past, Onr
teash s tir veethe osrvelpes
wrehitects ‘f‘f/’("_ﬁrfh’l'r.'.
omo Meee Kenvata
{hougl leaves ave many. the
1ol IS ot
- William Barder Years
Fhe thing that impresses vee
st bonr Anrevice is the
ety parests ooy their

children.
Duhe ol

l'lll\“l‘

Mast af ws becowe parents

long hefare we have stopped
bery ohi

el

Micnon Ml aaghlin

o wrive it it ool three
manths, te conceive it thiee

wetzntes: to collect the e

-etll ey [ife

yeott Fitegorald
Nibling rivalry is inevitable.,
The aul

LY SUTEC iUV [0 dvaid it
i fo baee ane child,

- Naney Samadin

Document Object Model (DOM): Objects and Collections 433

12.1 Introduction

In this chapter we introduce the Document Object Model (DOM), The DOM gives you
access to all the elements on a web page. Inside the browser, the whole web page—para-
graphs, forms, tables, etc.—is represented in an object hierarchy. Using JavaScript, you
can create, modify and remove elements in the page dynamically.

Previously, both Internet Explorer and Netscape had different versions of Dynamic
HTML, which provided similar functionality to the DOM. However, while they provided
many of the same capabilities, these two models were incompatible with each other. In an
effort to encourage cross-browser websites, the W3C created the standardized Document
Object Model. Firefox 2, Internet Explorer 7, and most other major browsers implement
most of the features of the W3C DOM.

This chapter begins by formally introducing the concept of DOM nodes and DOM
trees. We then discuss properties and methods of DOM nodes and cover additional
methods of the document object. We also discuss how to dynamically change style prop-
erties, which enables you to create many types of effects, such as user-defined background
colors and animations. Then, we present a diagram of the extensive object hierarchy, with
explanations of the various objects and properties, and we provide links to websites with
further information on the topic. .

‘Software Engineering Observation 12.1

With the DOM, XHTML elements can be treated as objects, and many attribuses of XHTML
elements can be treated as properties of these objects. Then, objects can be scripred (vhrough their
1d attributes} with JavaScript to achieve dynamic cffects.

12.2 Modeling a Document: DOM Nodes and Trees

As we saw in previous chapters, the document’s getElementById method is the simplest
way to access a specific element in a page. In this section and the next, we discuss more
thoroughly the objects returned by this method.

The getElementByld method returns objects called DOM nodes. Every element in
an XHTML page is modeled in the web browser by a DOM node. All the nodes in a doc-
ument make up the page’s DOM tree, which describes the relationships among elements.
Nodes are related to each other through child-parent relationships. An XHTML element
inside another elenent is said to be a child of the conraining element. The containing ele-
ment is known as the parent. A node may have multiple children, but only one parent.
Nodes with the same parent node are referred to as siblings.

Internet & World Wide Web How to Prograrﬁ

Some browsers have tools that allow you to see a visual representation of the DOM _
tree of a document. When installing Firefox, you can choose to install 2 tool called the
DOM Inspector, which allows you to view the DOM tree of an XHTML document. To
inspect 2 document, Firefox users can access the DOM Inspector from the Tools menu of
Firefox. If the DOM inspector is not in the menu, run the Firefox installer and: choose
Custom in the Setup Type screen, making sure the DOM Inspector box is checked in the
Optional Components window. .

Microsoft provides a Developer Toolbar for Internet Explorer that allows you to
inspect the DOM tree of a document. The toolbar can be downloaded from Microsoft at
go.microsoft.com/fwlink/?LinkId=92716. Once the toolbar is installed, restart the
browser, then click the » icon at the right of the toolbar and,_choose IE Deveioper Toolbar
from the menu. Figure 12.1 shows an XHTML document and its DOM tree displayed in
Firefox's DOM Inspector and in [E’s Web Developer Toolbar.

The XHTML. document contains a few simple elements. We explain the example
based on the Firefox DOM Inspector—the IE Toolbar displays the document with only
minor differences. A node can be expanded and collapsed using the + and - burtons mext
to the node’s name. Figure 12.1{b} shows all the nodes in the document fully expanded.
The document node (shown as #document) at the top of the tree is called the root node,
because it has no parent. Below the document node, the HTML node is indented from the
document node to signify that the HTML node is a child of the #document node. The HTML
node represents the htm1 element (lines 7—-24). a

The HEAD and BODY nodes are siblings, since they are both children of the HTML
node. The HEAD contains two #comment nodes, representing lines 5-6. The TITLE node

Fig. £2.1 | Demonstration of a document’s DOM tree. (Part | of 3.)

Document Object Mode! {(DOM): Objects and Collections 435

: fk:J!K:Jemlnnuhslmxzfmsghnﬂ e

Wi

An XHTML. Page

Mpasﬂ contams some baxc XHTML elernerts. We use the Furefox DOM Ingpector and the IE
Developer Toobar to view the DOM tree of the document, wiuch contains & DOM node for every
element in the document.

Here's a bst:
« One

* Two
+ Three

& BT 2 B s e

Fig. 12.1 | Demonstration of a document’s DOM tree. (Part 2 of 3.)

436 Internet & World Wide Web How to Program

(An XHTML Page

This page ccuteins some basic XFTML clameits. We use the Firefvs DOM Inspector and the [E Developer
Tookber 4o view the DOM wee of tae docament, which conteing & DOM sode for svary chewsent i the
docament.

Bere's s st

s Ooe
s Two

» Three

Fig. 12.1 | Demonstration of a document’s DOM tree. {Part 3 of 3.)

has a child text node (#ext) containing the text DOM Tree Demonstration, visible in the
right pane of the DOM inspector when the text node is selected. The BODY node contains
nodes representing each of the elements in the page. Note that the LI nodes are children
of the UL node, since they are nested inside it. '

Also, notice that, in addition to the text nodes representing the text inside the body,
paragraphs and list elements, a number of other text nodes appear in the document. These
text nodes contain nothing but white space. When Firefox parses an XHTML document
into a DOM tree, the white space between sibling elements is interpreted as text and
placed inside text nodes. Internet Explorer ignores white space and does not convert it into
empty text nodes. If you run this example on your own computer, you will notice that the
BODY node has a #comment child node not present above in both the Firefox and Internet
Explorer DOM trees. This is a result of the copyright line at the end of the posted file.

This section introduced the concept of DOM nodes and DOM trees. The next sec-
tion discusses DOM nodes in more detail, discussing methods and properties of DOM
nodes that allow you to modify the DOM tree of a document using JavaScript.

12.3 Traversing and Modifying a DOM Tree

The DOM gives you access to the elements of a document, allowing you to modify the
contents of a page dynamically using event-driven JavaScript. This section introduces

Document Object Model {DOM): Objects and Collections 437

properties and methods of all DOM nodes that enable you to traverse the DOM tree,
modify nodes and create or delete content dynamically. '

Figure 12.2 showcases some of the functionality of DOM nodes, as well as two addi-
tional methods of the document object. The program allows you to highlight, modify,
insert and remove elements.

Lines 117-132 contain basic XHTML elements and content. Each element has an id
attribute, which is also displayed at the beginning of the element in square brackets. For
example, the id of the hl element in lines 117~118 is set to bigheading, and the heading
text begins with [bigheading]. This allows the user to see the id of each element in the
page. The body also contains an h3 heading, several p elements, and an unordered list.

A div element (lines 133-162) contains the remainder of the XHTML body. Line
134 begins a form element, assigning the empry string to the required action attribure
(because we’re not submitting to a server) and returning false to the onsubmit attribute.
When a form’s onsubmit handler returns false, the navigation to the address specified in
the action attribute is aborted. This allows us to modify the page using JavaScript event
handlers without reloading the original, unmodified XHTML.

Fig. 12.2 | Basic DOM functionality. (Part | of 8.)

438 Internet & World Wide Web How to Program

urrentNode . removeChi1d(oldNode);

Fig. 12.2 | Basic DOM functionality. (Part 2 of 8.)

Document Object Model (DOM): Objects and Collections 439

Fig. 12.2 | Basic DOM functionality. (Part 3 of 8.)

440 Internet & World Wide Web How to Program

[bigheading] DHTML Object Model

{smallheading] Element Functionality

[para1} The Document Object Model {DOM} akows for quick, dynamic access o
all elemnents in an XHTML document for maniputation with JavaScript.

[para2] For more information, check ot the "JavaScript and the DOM" section
of Daital's fink] JavaScript Resource Cerer.

[para3] The buttons betow demonstrate: (st

« {#emi) getBlementByld snd parentNode
o iteml) mseriBefore and sppendChid
+ [item3] repiaceChid and resoveClild

e S TN

:)
Append Chid
Lﬂephu::mm]

Fig. 12.2 | Basic DOM funchonahty {Part 4 of 8.)

Document Object Model (DOM): Objects and Collections

[bigheading] DHTML Object Model

{smallheading] Element Functionality

[parai] The Docirnent Object Model (DOM) aliows for quick, gynamic access 1o
ak elements in an XHTMI. docunent for manipulation with JavaScript

[para2] For more information, check out the "JavaScript and the DOM™ section
of Deitef's ink} JavaScript Resource Center.

[para3) The bultons below demonstrate:list)

+ [em1] getFlenestByld and parentNode

| [Repluce.Cument |

[bigheading] DHTML Object Model

[smaltheading] Element Functionality

[parat] The Document Cbject Mode) {DOM) aliows for quick, dynamic access fo
all elements i an XHTML document for manipulation with JavaScript

[pera} For more information, check owt the "JavaScript and the DOM" section
of Deitef's {ink] JavaScript Resowrce Center.

[mew(] A brand rew patagraph.
{para3] The buttons betow demonstrate:{ist)

« [iemi] getiflementByld and parepiNode
o [tem2} insertefors md appendChild

]

{A brand rew paragraph: | isenRetors |

|

Fig. 12.2 | Basic DOM functionality. {Part 5 of 8.}

442 Internet & World Wide Web How to Program

[para1] The Document Object Model (DOM) aflows for quick, dynamic access to
4l glements in an XHTML documeit for mantpuiation with JavaScript

[para2] For more iformation, check out the "JavaScript and the DOM" saction of
Deltel's [link] JavaScript Resource Center,

[newd} A brand new paragraph.
[rew1] A paragraph within the brand new paregraph
{paradf The buttons below demonstrate. (st}
« [itera]] getElementByld and perentNode

+ [em2] msentBefore and mppendChild
v [#em?] replaceChid and removeChild

e R

fpara1} The Document Object Moded {DOM) allows for quick, dynamic access to
afl elotnents in an XHTML document for manipulation with JavaScriph.

[para2] For more infermation, check out the “JavaScript and the DOM” section
of Deitel's fink} JavaScript Resowrce Center.

[new0] A brand new paragraph.
[rew2) A replacement paragraph
|paral} The buttons beiow gemonstrate:(lish

+ [iem?] getFienientByid and parentNode
» [texn) isertBefore and appendChid
+ [itesald] replaceChild and renove Child

ferrereenemassesemmmmnsmseseesemsssssssssesesssnes e cmnenne
o B -7
brand new paragraph [insedBuiers

:|__Append Child

i Beplacqgurent]

[Remave Cunans }

i

Fig. 12.2 | Basic DOM functionality. {Part 6 of 8.)

Document Object Modet {(DOM): Objects and Collections 443

[para1] The Document Object Mode) (DOM} allows for quick, dynamic access i¢
all elements in an XHTML document for manipulation with JavaScript,

{para2] For more information, check out the "JavaScript and the DOM” section
of Daitef's (fink] JavaScript Resource Center.

{newO} A brand new paragraph
[new2] A replacernent paragraph
[para3] The buttans below demonsirate (k5

» [#emi] getBlementByld and parentNods
+ [tem2] msenBefore and appendChild
+ [item3) repinceChild and remeneChilkd

oum

Ingei Bekye]

o Brand new paragraph| [AppendChid |
Ieplacementparagraph; { Raplace Cument |

[parai] The Dacument Object Model {DOM) altows for quick, dynamic access to
af elements in an XHTML docurment for manipiiation with JavaScript

Ipara2] For more information, check out the “JavaScript and the DOM” section
of Deiter's [link] Java Script Resource Genter.

{rew0] A brand new parsgragh
[rew?] A replatement paragraph.
[para3) The buttons below dermonsirate (i<t

« {itemt] getElementByld and pareniNode
« [tewn?] insertBefore and appendChild
+ [irem?] replaceChild and removeChild

Temi 4 GetRyWd |
Abrond new paragrapn [inseriBefore |
gbs_apdmpsn_’_a__g‘raphﬁ Apgrend Chid
ieplacemant paragraph.! [Replace Cugent |
Remove Cyrent

Fig. 12.2 | Basic DOM functionality. (Part 7 of 8.)

444 Internet & World Wide Web How to Program

{para1} The Document Object Madet {DOM) aliows for qusck, dynareic access 1o
ali elements in an XHTML document for manipuation with JavaScript.

frew0] A brand new paragraph.
[new2] A replacement paragrapn

[paraz] For more informaticn, check out the “JavaScript and the DOM" section
of Deited's flink] JavaScript Resource Center

[para3] The butions below demonstrate:(list)

» [iem2] insertBefore and appendChild
« [iRem3] replaceChild and removeChid

e

brand wr;nwpamgf:p;g‘g Insenrt Sefocs }

agraph witwn e b, [AppenaChid |

A replacement paragrag { Replace Curent J

Remove Gument
Gel Parant

Fig. 12.2 | Basic DOM functionality. (Part 8 of 8.)

A table (lines 135-160) contains the controls for modifying and manipulating the
elements on the page. Each of the six buttons calls its own event-handling function to per-
form the action described by its value.

The JavaScript code begins by declaring two variables. The variable currentNode (line
27) keeps track of the currently highlighted node, because the functionality of the buttons
depends on which node is currently selected. The body’s onload attribute (line 1 16)
initializes currentNode to the hl element with id bigheading. Variable idcount (line 28)
is used to assign a unique 7d to any new elements that are created. The remainder of the
JavaScript code contains event handling functions for the XHTML buttons and two
helper functions that are called by the event hau “ers. We now discuss each button and its
corresponding event handler in detail.

Finding and Highlighting an Element Using getElementById and className

The first row of the table (lines 136-141) allows the user to enter the id of an element into
the text field (lines 137-138) and click the Get By Id burron (lines 139--140) to find and
highlight the element, as shown in Fig. 12.2(b) and (g). The onclick attribure sets the
bucton’s event handler to function byId.

The byId function is defined in lines 31--38. Line 33 uses getE1 ementById to assign
the contents of the text field to variable id. Line 34 uses getE1ementById again to find the
element whose id attribute matches the contents of variable id, and assign it to variable
target. If an element is found with the given id, getElementById returns an object

Document Object Model (DOM): Objects and Collections 445

representing that element. If no element is found, getElementById returns null. Line 36
checks whether target is an object—recall that any object used as a boolean expression is
true, while nu11 is false. If target evaluates to true, line 37 calls the switchTo function
with target as its argument,

The switchTo function, defined in lines 106112, is used throughout the program to
highlight a new element in the page. The current element is given a yellow background
using the style class highlighted, defined in line 22. Line 108 sets the current node’s
className property to the empty suing. The className property allows you to change
an XHTML element’s c1ass arrribute. In this case, we clear the class attribute in order
to remove the highlighted class from the currentNode before we highlight the new one.

Line 109 assigns the newNode object (passed into the function as a parameter) to vari-
able currentNode. Line 110 adds the highlighted style class to the new currentNode
using the className property.

Finally, line 111 uses the id property to assign the current node’s id to the input
field’s value property. Just as c1assName allows access to an clement’s class attribute, the
id property controls an element’s i attribute. While this isn’t necessary when switchTo
is called by byId, we will see shortly that other functions call switchTo. This line makes
sure that the rext field’s value is consistent with the currently selected node’s id. Having
found the new element, removed the highlighting from the old element, updated the cur-
rentNode variable and highlighted the new element, the program has finished selecting a
new node by a user-entered id.

Creating and Inserting Elements Using insertBefore and appendChild

The next two table rows allow the user to create a new element and insert it before the
current node or as a child of the current node. The second row (lines 141-145) allows the
user to enter text into the text field and click the Insert Before burton. The text is placed
in 2 new paragraph element, which is then inserted into the document before the currently
selected element, as in Fig. 12.2(c). The button in lines 143.-144 calls the insert func-
tion, defined in lines 42--48.

Lines 44—45 call the function createNewNode, passing it the value of the input field
{whose-id is ins) as an argument. Function createNewNode, defined in lines 94—103, cre-
ates a paragtaph node containing the rext passed to it. Line 96 creates a p element using
the document object’s createElement method. The createElement method creates a new
DOM node, taking the tag name as an argument. Note that while createElement creates
an element, it does not insert the element on the page. '

Line 97 creates a unique id for the new element by concatenating "new" and the value
of idcount before incrementing idcount in line 98. Line 99 assigns the id to the new ele-
ment. Line 100 concatenates the element’s id in square brackets to the beginning of text
(the parameter conrtaining the paragraph’s text).

Line 101 inrroduces two new methods. The document’s createTextNode method cre-
ates a node that can contain only text. Given a string argument, createTextNode inserts
the string into the text node. In line 101, we create a new text node conraining the contents
of variable text. This new node is then used (still in line 101) as the argument to the
appendChild method, which is called on the paragraph node. Method appendChild is
called on a parent node to insert a child node (passed as an argument) after any existing

children.

446 Internet & World Wide Web How to Program

After the p element is created, line 102 returns the node to the calling function
insert, where it is assigned to variable newNode in lines 44—45. Line 46 inserts the newly
created node before the currently selected node. The parentNade property of any DOM
node contains the node’s parent. In line 46, we use the parentNode property of current-
Node to get its parent.

We call the insertBefore method (line 46) on the parent with newNode and cur-
rentNode as its arguments to insert newNode as a child of the parent directly before cur-
rentNode. The general syntax of the insertBefore method is

parent.insertBefore(newChild, existingChild);

"The method is called on a parent with the new child and an existing child as arguments.
The node newChild is inserted as a child of parent directly before existingChild. Line 47
uses the switchTo function (discussed earlier in this section) to update the currentNode
to the newly inserted node and highlight it in the XHTML page.

The third table row (lines 145-149) allows the user to append 2 new paragraph node
as a child of the current element, demonstrated in Fig. 12.2(d}. This features uses a similar
procedure to the insertBefore functionality. Lines 53~54 in function appendNode create
a new node, line 55 inserts it as a child of the current node, and line 56 uses switchTo to
update currentNode and highlight the new node.

Replacing and Removing Elements Using replaceChild and removeChild
The next two table rows (lines 149—156) allow the user to replace the current elemenrt with
a new p element or simply remove the current element. Lines 150-152 contain a text field
and a burron that replaces the currently highlighted element wich a new paragraph node
containing the rext in the text field. This feature is demonstrated in Fig. 12.2(¢).

The burtton in lines 151-152 calls function replaceCurrent, defined in lines 60—66.
Lines 62~63 call createNewNode, in the same way as in insert and appendNode, getting
the text from the correct input field. Line 64 gets the parent of currentNode, then calls
the replaceChild method on the parent. The replaceChild method works as follows:

parent.replaceChild(newChild, oldChild);

The parent's replaceChild method inserts newChild into its list of children in place of o/d-
Child.

The Remove Current feature, shown in Fig. 12.2(h), removes the current element
entirely and highlights the parent. No text field is required because a new element is not
being created. The button in lines 154-155 calls the remove function, defined in lines 69—
79. If the node’s parent is the body element, line 72 alerts an error—the program does not
allow the entire body element to be selected. Otherwise, lines 75-77 remove the current
element. Line 75 stores the old currentNode in variable o1dNode. We do this to maintain
a reference to the node to be removed after we've changed the value of currentNode, Line
76 calls switchTo to highlight the parent node.

Line 77 uses the removeChild method to remove the oldNode (a child of the new
currentNode) from its place in the XHTML document. In general,

parent. removeChild(child);

looks in parent’s list of children for child and removes it.

Document Object Model (DOM): Objects and Collections 447

The final button (lines 157-158) selects and highlights the parent element of the cur-
rently highlighted element by calling the parent funcrion, defined in lines 82-90. Func-
tion parent simply gets the parent node (line 84}, makes sure it is not the body element,
(line 86) and calls switchTo to highlight it (line 87). Line 89 alerts an error if the parent
node is the body element. This feature is shown in Fig. 12.2(f).

This section introduced the basics of DOM tree traversal and manipulation. Next, we
introduce the concept of collections, which give you access to multiple elements in a page.

12.4 DOM Collections

Included in the Document Object Madel is the notion of collections, which are groups of
related objects on a page. DOM collections are accessed as properties of DOM objects
such as the document object or a DOM node. The document object has properties
containing the images collection, 1inks collection, forms collection and anchors
collection. These collections contain all the elements of the corresponding type on the
page. Figure 12.3 gives an example thar uses the Tinks collection to extract all of the links
on a page and display them together at the bottom of the page.

ink to contents
14 nks]; st.length

Fig. 12.3 | Using the 1inks collection. (Part | of 2.}

448 Internet & World Wide Web How to Program

Deitel Resource Centers

Deitel's website contains a rapidly growing kst of Resource Cenlers on a wide
range of topics. Many Resource centers reiated to topics covered in this book,
Intermiet and World Wide Web How to Prograrm, 4th Edition. We have Resouce
Centers on Web 20, Firefox and nternet Expiorer 7, XHTML, and

Watch the list of Deilel Resource Centers for related new Resource Centers.

Links in this page.
| Deitel's website | list of Resource Centers | lnienet and World Wide Web How to
Program, 4th Edition | Web 2.0 } Firefox | inteme! Expiorer 7 | XHTML | Javascript]

Fig. 12.3 | Using the Tinks collection. (Part 2 of 2.)

Document Object Model {DOM): Objects and Collections 449

The XHTML body contains a paragraph (lines 46-59) with links ac various places in
the text and an empty div (line 60) with id Tinks. The body’s onload atrribute specifies
that the process1inks method is called when the body finishes loading.

Method processlinks declares variable 1inks1ist (line 27) to store the document’s
Tinks collection, which is accessed as the Tinks property of the document object. Line 28
creates the string {contents) that will contain all the document’s links, to be inserted into
the Tinks div later. Line 31 begins a for statement to iterate through each link. To find
the number of elements in the collection, we use the collection’s Tength property.

Line 33 inside the for statement creates a variable (current1ink) that stores the cur-
rent link. Note that we can access the collection stored in Tinkslist using indices in
square brackets, just as we did with arrays. DOM collections are stored in objects which
have only one property and two methods—the Tength property, the 1 tem method and the
namedItem method. The item method—an alternative to the square brackered indices—
can be used to access specific elements in a collection by taking an index as an argument,
The namedItem method takes 2 name as a parameter and finds the element in the collec-
tion, if any, whose id attribute or name attribure marches ir.

Lines 34-36 add a span element to the contents string containing the current link.
Recall that the 11nk method of a string object returns the string as a link to the URL passed
to the method. Line 35 uses the 1ink method to create an a (anchor) element containing
the proper text and href attribute.

Notice that variable currentLink (a DOM node representing an a element) has a spe-
cialized href property to refer to the link’s href attribute. Many types of XHTML ele-
ments are represented by special types of nodes that extend the functionality of a basic
DOM node. Line 39 inserts the contents into the empty div with id "Tinks" (line 60) in
order to show all the links on the page in one locarion.

Collections allow easy access to all elements of a single type in a page. This is useful
for gathering elements into one place and for applying changes across an enrire page. For
example, the forms collection could be used to disable all form inpurs after a submit
burron has been pressed to avoid multiple submissions while the next page loads. The next
section discusses how to dynamically modify CSS styles using JavaScript and DOM nodes.

12.5 Dynamic Styles

An element’s style can be changed dynamically. Often such a change is made in response
to user events, which we discuss in Chapter 13. Such style changes can create many effects,
including mouse hover effects, interactive menus, and animarions. Figure 12.4 is a simple
example that changes the background-color style property in response to user input.

e

Fig. 12.4 | Dynamic styles. (Part | of 2.)

450 Internet & World Wide Web How to Program

123

prompt("Enter a calor name for the
"background of this page", "" J); B ’
ocument .body . style.backgroundColor = inputColor;

Fig. 12.4 | Dynamic styles. (Part 2 of 2.}

Function start (lines 12—17) prompts the user to enter a color name, then sets the
background color to that value. [Noze: An error occurs if the value entered is not a valid
color. See Appendix B, XHTML Colors, for further information.] We refer to the back-
ground color as document.body.style.backgroundCotor—the body property of the
document object refers to the body element. We then use the style property (a property
of most XHTML elements) to set the background-color CSS property. This is referred
to as backgroundColor in JavaScript—the hyphen is removed to avoid confusion with the
subtraction {-) operator. This naming convention is consistent for most CSS properties.
For example, borderWidth correlates to the border-width CSS property, and fontFamily
correlates to the font-family CSS property. In general, CSS properties are accessed in the
format node. style.styleproperty.

Figure 12.5 introduces the setInterval and clearInterval methods of the window
object, combining them with dynamic styles to create animaved effects. This example is a
basic image viewer that allows you to select a Deitel book cover and view it in a larger size.
When one of the thumbnail images on the right is clicked, the larger version grows from
the top-left corner of the main image area.

The body (lines 66-85) conrtains two div elements, both floated 1eft using styles
defined in lines 14 and 17 in order to present them side by side. The left div contains the

Document Object Model (DOM): Objects and Collections 451

full-size image iw3htp4. jpg, the cover of this book, which appears when the page loads.
The right div contains six thumbnail images which respond to the click event by calling
the display method and passing it the filename of the corresponding full-size image.

The display function (lines 46-62) dynamically updates the image in the left div to
the one corresponding to the user's click. Lines 48—49 prevent the rest of the function
from executing if interval is defined (i.c., an animation is in progress.) Line 51 gets the
left div by its 1d, imgCover. Line 52 creates a new img element. Lines 53-55 set its id to
imgCover, set its src to the correct image file in the fullsize directory, and set its
required a1t actribute. Lines 56-59 do some additional initialization before beginning the
animation in line 61. To create the growing animarion effect, lines 5738 set the image
width and height to 0. Line 59 replaces the current bigImage node with newNode (created
in line 52), and line 60 sets count, the variable that controls the animation, to 0.

Line 61 introduces the window object’s setInterval method, which starts the anima-
tion. This method takes two parameters—a statement to execute repeatedly, and an
integer specifying how often to execure it, in milliseconds. We use setInterval to call

Fig. 12.5 | Dynamic styles used for animation. (Part | of 4.)

452 Internet & World Wide Web How to Program

" window. clearInterval(interval
“interval = null; :
g

Fig. 12.5 | Dynamic styles used for animation. (Part 2 of 4.)

Document Object Model (DOM): Objects and Collections 453

Loy Yiewer Windaws Ir

ol

‘ Q u}"mﬂv&mr* ,

FROGRAM .

Fig. 12.5 | Dynamic stytes used for animation. (Part 3 of 4.)

454 Internet & World Wide Web How to Program

T Deital Book Cover Viewnr Windows [atoract Lxplares

HOW 1O
PROGR/

Fig. 12.5 | Dynamic styles used for animation. (Part 4 of 4.)

Document Object Model (DOM): Objects and Collections 455

function run every 10 milliseconds. The setInterval method returns a unique identifier
to keep track of that particular interval—we assign this identifier to the variable interval.
We use this identifier to stop the animation when the image has finished growing.

The run function, defined in lines 28-42, increases the height of the image by the
value of speed and updates its width accordingly to keep the aspect ratio consistent.
Because the run function is called every 10 milliseconds, this increase happens repeatedly
to create an animated growing effect. Line 30 adds the value of speed (declared and
initialized to 6 in line 24) to count, which keeps track of the animation’s progress and dic-
tates the current size of the image. If the image has grown to its full height (375), line 35
uses the window's clearInterval method to stop the repetitive calls of the run method.
We pass to clearInterval the interval identifier (stored in interval) that setInterval
created in line 61. Although it seems unnecessary in this script, this identifier allows the
script to keep track of multiple intervals running at the same time and to choose which
interval to stop when calling clearInterval.

Line 39 gets the image and lines 40—41 set its width and height CSS properties. Note
that line 40 multiplies count by a scaling factor of .7656 in order to keep the ratio of the
image’s dimensions consistent with the actual dimensions of the image. Run the code
example and click on a thumbnail image to sce the full animation effect.

This section demonstrated the concept of dynamically changing CSS styles using
JavaScript and the DOM. We also discussed the basics of how to creare scripted anima-
tions using setInterval and clearInterval.

12.6 Summary of the DOM Objects and Collections

As you have seen in the preceding sections, the objects and collections in the W3C DOM
give you flexibility in manipulating the elements of 2 web page. We have shown how to
access the objects in a page, how to access the objects in a collection, and how to change
element styles dynamically.

The W3C DOM allows you to access every element in an XHTML document. Each
element in a document is represented by a separate object. The diagram in Fig, 12.6 shows
many of the important objects and collections provided by the W3C DXOM. Figure 12.7
provides a brief description of each object and collection in Fig. 12.6.

gk

Fig. 12.6 | W3C Document Object Model.

456 Internet & World Wide Web How to Program

5 9CCESS to :h; ;.iucument.
1 d 'Iocatmn :

doéuﬁf_i_ent.f The ele--
'Which thcy were

Fig. 12.7 | Objects and collections in the W3C Document Object Model.

For a complete reference on the W3C Document Object Model, see the DXOM Level
3 recommendation from the W3C at http://www.w3.0rg/TR/DOM-Level-3-Core/. The
DOM Level 2 HTML Specification (the most recent HTML DOM standard), available
athttp://www.w3.org/TR/DOM-Level-2-HTML/, describes additional DOM functionality

specific to HTML, such as objects for various types of XHTML elements. Keep in mind
thar not all web browsers implement all features included in the specification.

12.7 Web Resources

waw.deitel.com/javascript/
The Deitel JavaScript Resource Center contains finks to some of the best JavaScript resources on the
web. There you'll find categorized links to JavaScripe tools, code generators, forums, books, libraries,

Document Object Model (DOM): Objects and Coliections 457

frameworks, tutorials and more. Check out the section specifically dedicated to the Document Obj-
ect Model. Be sure to visit the related Resource Centers on XHTML (www. deitel. com/xhtm1/) and

CSS 2.1 (www.deitel.com/css21/).

Sect:on 12 2 Modelmg a Dmmt: DOM M:mwd Trees ST
*: The getElenentByld mthod sewms ob;gc:s called DOM nodes. Every demem inan XHTML

-2 string argument, createi’ext' o

ﬁ .. Mcthod apaendt:hﬂd is. caiicd on 4
aﬁcz any’ cxxsrmg ch:idrcn _' '

458 Intemet & Wc_.rld Widéf Webmwwl’mm

*-The document. olyject has pmpem:smnmnmgthe
' Jection-and anchors cnllcctwn Thﬁ: it
type on the page. ‘ '

XHTML c.lcmcms are reprmemcd by '
basic DOM node. :

. Coﬁcwomaﬂuwcasymsmali _
dcmemsmmoncplaecmctforapp yin,

SccuaanSDynamchzﬂe:. :
~ » ‘Anélement’s style cin'be chang

"+ events, which are: discussed in-the's
:_mcludmgmouschnvcrcﬁccw, LTINS

o capmlmng dle ﬁrst Ictzer of the foll

' 'Thc ‘setInte rval mcthod of

- erval. Tt akes two parameters—a statement

often 1o execute it, in milliscconds. The sé

track of that particular. interval.’

* The window. objeztt s cTedrIntery
method. We passto c¥ earIntErVi'l tha)

Section I&G:S'ummy#ﬁim Hbje

. Theob)gcuau&coﬂcammindwm5 YO

‘- of a webpage; - £ -
e TheW&CDOMaﬁowsynutomcv y
4 docmncnt Is rcpmmu&by@npﬂaw

Nocallwabbmwscrsmlp&em all fea

Terminology . |
‘anchors collection.of the document.obje
- bedy propertyiof the documen
- appendChild method of 2 DOM n

HS

e

e

i

I

it i

O

o
Je

'

